H(t)=112t+-16t^2

Simple and best practice solution for H(t)=112t+-16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=112t+-16t^2 equation:



(H)=112H+-16H^2
We move all terms to the left:
(H)-(112H+-16H^2)=0
We use the square of the difference formula
-(112H-16H^2)+H=0
We get rid of parentheses
16H^2-112H+H=0
We add all the numbers together, and all the variables
16H^2-111H=0
a = 16; b = -111; c = 0;
Δ = b2-4ac
Δ = -1112-4·16·0
Δ = 12321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{12321}=111$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-111)-111}{2*16}=\frac{0}{32} =0 $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-111)+111}{2*16}=\frac{222}{32} =6+15/16 $

See similar equations:

| 3x+3=−54 | | 9x−4=23 | | 6=2(x+8)—5x | | 4-n-4n=24 | | 6=2(x+2)—5x | | 5(b-6)=39 | | 4w+32=8w | | 2q-5=3q+5 | | -3n+3-n=7 | | 9^x=81^x-1 | | 6=2(x+2)-5x | | 3^x=972 | | 5a+6-3a=25 | | 75-f=0 | | 10+4c-6=12 | | 3x+10=3x-28= | | 5x×3x=135 | | h=60*4-5*4 | | (2x1/10)= | | 12=-12x+96 | | 6x-3=10x+4 | | 3n+4n-1=6 | | 2k+-10=180 | | 2k-10=180 | | 7x=2=30 | | 7^x=48 | | 10x-98=5x-23 | | m+4-4=61/4 | | (2a-7)(2a+7)=0 | | 6.4x-3.2=3.2 | | t+2/4-t-2/6=2/3+t | | 4/x+5/x/6+3=24/x |

Equations solver categories